15

16

17

18

19

20

21

MATEMATIKA

2015

Под редакцией И.В. Ященко

EF3

В. А. Смирнов

ГЕОМЕТРИЯ. СТЕРЕОМЕТРИЯ

3AДАЧА 16

ФГОС

В. А. Смирнов

ЕГЭ 2015. Математика Задача 16 Геометрия. Стереометрия

Под редакцией И.В.Ященко

Электронное издание

Москва Издательство МЦНМО 2015 УДК 373:51 ББК 22.1я72 С50

Смирнов В. А. ЕГЭ 2015. Математика. Задача 16. Геометрия. Стереометрия Под ред. И. В. Ященко Электронное издание М.: МЦНМО, 2015 127 с. ISBN 978-5-4439-2118-1

Рабочая тетрадь по математике серии «ЕГЭ 2015. Математика» ориентирована на подготовку учащихся старшей школы к успешной сдаче единого государственного экзамена по математике в 2015 году. В рабочей тетради представлены задачи по одной позиции контрольных измерительных материалов ЕГЭ-2015.

На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль уровня основных арифметических навыков и умения решать текстовые задачи. Рабочая тетрадь ориентирована на один учебный год, однако при необходимости позволит в кратчайшие сроки восполнить пробелы в знаниях выпускника.

Тетрадь предназначена для учащихся старшей школы, учителей математики, родителей.

Издание соответствует Федеральному государственному образовательному стандарту (ФГОС).

Подготовлено на основе книги: *Смирнов В.А.* ЕГЭ 2015. Математика. Задача 16. Геометрия. Стереометрия / Под ред. И.В.Ященко. — М.: МЦНМО, 2015. — 128 с.

Издательство Московского центра непрерывного математического образования 119002, Москва, Большой Власьевский пер., 11, тел. (499) 241–08–04. http://www.mccme.ru

[©] Смирнов В. А., 2015.

[©] МЦНМО, 2015.

Введение

Данное пособие предназначено для подготовки к выполнению задания 16 ЕГЭ по математике. Его целями являются:

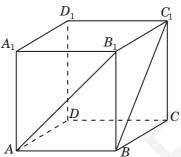
- показ примерной тематики и уровня трудности геометрических задач, включенных в содержание ЕГЭ;
- проверка качества знаний и умений учащихся по геометрии, их готовность к сдаче ЕГЭ;
- развитие представлений учащихся об основных геометрических фигурах и их свойствах, формирование навыков работы с рисунком, умений проводить дополнительные построения;
 - повышение вычислительной культуры учащихся.

Пособие содержит задачи на нахождение углов между прямыми в пространстве, прямой и плоскостью, двумя плоскостями; нахождение расстояний от точки до прямой, от точки до плоскости, между двумя прямыми. Наличие рисунков помогает лучше понять условия задач, представить соответствующую геометрическую ситуацию, наметить план решения, провести дополнительные построения и вычисления

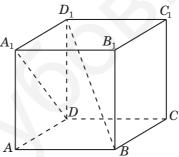
Для решения предлагаемых задач требуются знание определений тригонометрических функций, формул для нахождения элементов треугольника, теоремы Пифагора, теоремы косинусов, умение проводить дополнительные построения, владение координатным и векторным методами геометрии.

Каждая задача оценивается исходя из двух баллов. Один балл начисляется за правильное построение или описание искомого угла или расстояния. Также один балл начисляется за правильно проведенные вычисления и правильный ответ.

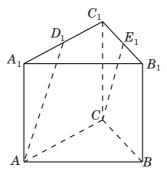
Вначале предлагается диагностическая работа на нахождение углов и расстояний для различных многогранников. Для тех, кто хочет проверить правильность решения предложенных задач или убедиться в верности полученного ответа, приводятся решения задач, как правило, двумя различными способами и даются ответы. Затем, для закрепления рассмотренных методов решения задач, предлагаются тренировочные работы на нахождение углов и расстояний для каждого из рассмотренных в диагностической работе видов фигур.

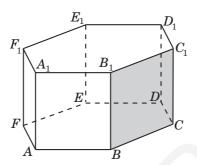

В случае успешного решения этих задач можно переходить к выполнению заключительных диагностических работ, содержащих задачи разных типов.

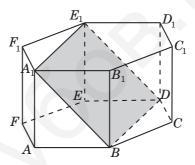
В конце пособия даны ответы ко всем задачам, а также помещены два приложения. Первое содержит задачи на изображение сечений многогранников и нахождение их площадей. Второе — задачи на изображение тел вращения и нахождения их объемов и площадей поверхностей. Предлагаемые задачи предназначены для углубленного изучения геометрии. Их целью является развитие пространственных представлений учащихся, выработка умений проводить дополнительные построения на изображениях пространственных фигур, находить площади плоских фигур в пространстве, находить объемы и площади поверхности пространственных фигур. К каждой задаче предлагается рисунок, который помогает лучше понять условие задачи, представить соответствующую геометрическую ситуацию, наметить план решения, провести дополнительные построения и вычисления.

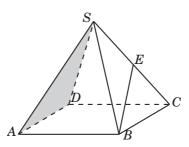

Отметим, что лучшим способом подготовки к ЕГЭ по геометрии являются систематические занятия по учебнику геометрии. Данное пособие не заменяет учебника. Оно может быть использовано в качестве дополнительного сборника задач при изучении геометрии в 10—11 классах, а также при организации обобщающего повторения или самостоятельных занятиях геометрией.

Диагностическая работа

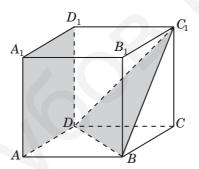

1.1. В единичном кубе $A...D_1$ найдите угол между прямыми AB_1 и BC_1 .

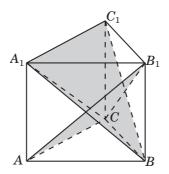

1.2. В единичном кубе $A...D_1$ найдите угол между прямыми $D\!A_1$ и $B\!D_1$.

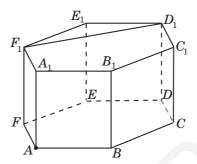

1.3. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите косинус угла между прямыми AD_1 и CE_1 , где D_1 и E_1 — соответственно середины ребер A_1C_1 и B_1C_1 .

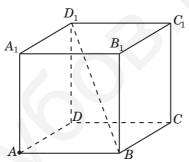

2.1. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите угол между прямой AF и плоскостью BCC_1 .

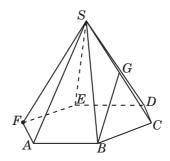

2.2. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите угол между прямой CC_1 и плоскостью BDE_1 .

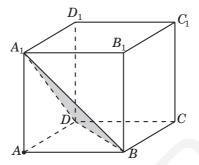

2.3. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите синус угла между прямой BE и плоскостью SAD, где E — середина ребра SC.

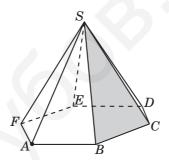

3.1. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите угол между плоскостями AFF_1 и DEE_1 .

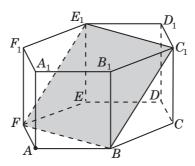

3.2. В единичном кубе $A...D_1$ найдите тангенс угла между плоскостями ADD_1 и BDC_1 .

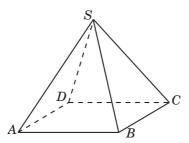

3.3. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите косинус угла между плоскостями ACB_1 и BA_1C_1 .

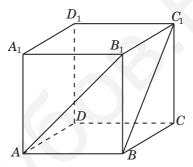

4.1. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до прямой D_1F_1 .

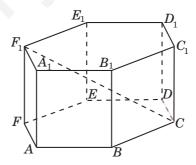

4.2. В единичном кубе $A...D_1$ найдите расстояние от точки A до прямой BD_1 .


4.3. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки F до прямой BG, где G — середина ребра SC.

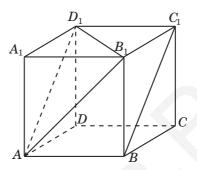

5.1. В единичном кубе $A...D_1$ найдите расстояние от точки A до плоскости BDA_1 .


5.2. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки A до плоскости SBC.

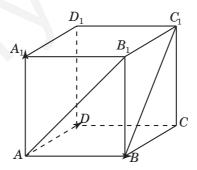

5.3. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до плоскости BFE_1 .


6.1. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите расстояние между прямыми SA и BC.

6.2. В единичном кубе $A...D_1$ найдите расстояние между прямыми AB_1 и BC_1 .

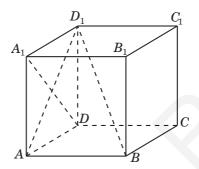


6.3. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние между прямыми AA_1 и CF_1 .

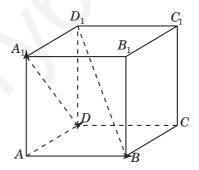


Решения задач 1.1—1.3 диагностической работы

1.1. Первое решение. Прямая AD_1 параллельна прямой BC_1 и, следовательно, угол между прямыми AB_1 и BC_1 равен углу B_1AD_1 . Треугольник B_1AD_1 равеносторонний и, значит, угол B_1AD_1 равен 60°.

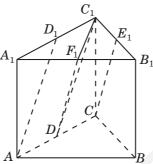


Второе решение. Введем систему координат, считая началом координат точку A, осями координат — прямые AB, AD, AA_1 . Вектор \overrightarrow{AB}_1 имеет координаты (1,0,1). Вектор \overrightarrow{BC}_1 имеет координаты (0,1,1). Воспользуемся формулой нахождения косинуса угла φ между векторами \overrightarrow{AB}_1 и \overrightarrow{BC}_1 . Получим $\cos \varphi = \frac{1}{2}$ и, значит, угол φ равен 60° . Следовательно, искомый угол между прямыми AB_1 и BC_1 равен 60° .

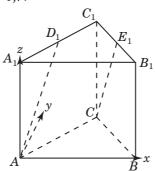


Ответ. 60°.

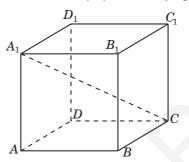
1.2. Первое решение. Рассмотрим ортогональную проекцию AD_1 прямой BD_1 на плоскость ADD_1 . Прямые AD_1 и DA_1 перпендикулярны. Из теоремы о трех перпендикулярах следует, что прямые DA_1 и BD_1 также перпендикулярны, т.е. искомый угол между прямыми DA_1 и BD_1 равен 90° .



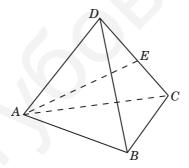
Второе решение. Введем систему координат, считая началом координат точку A, осями координат — прямые AB, AD, AA_1 . Вектор \overrightarrow{DA}_1 имеет координаты (0,-1,1). Вектор \overrightarrow{BD}_1 имеет координаты (-1,1,1). Скалярное произведение этих векторов равно нулю и, значит, искомый угол между прямыми DA_1 и BD_1 равен 90° .


Ответ. 90°.

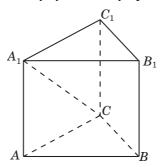
1.3. *Первое решение.* Обозначим D и F_1 соответственно середины ребер AC и A_1B_1 .

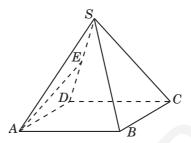

Прямые DC_1 и DF_1 будут соответственно параллельны прямым AD_1 и CE_1 . Следовательно, угол между прямыми AD_1 и CE_1 будет равен углу C_1DF_1 . Треугольник C_1DF_1 равнобедренный, $C_1D=DF_1=\frac{\sqrt{5}}{2}$, $C_1F_1=\frac{\sqrt{3}}{2}$. Используя теорему косинусов, получаем $\cos \angle C_1DF_1=0.7$.

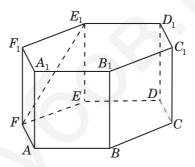
Второе решение. Введем систему координат, считая началом координат точку A, как показано на рисунке. Точка C имеет координаты $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)$, точка D_1 имеет координаты $\left(\frac{1}{4}, \frac{\sqrt{3}}{4}, 1\right)$, точка E_1 имеет координаты $\left(\frac{3}{4}, \frac{\sqrt{3}}{4}, 1\right)$. Вектор \overrightarrow{AD}_1 имеет координаты $\left(\frac{1}{4}, \frac{\sqrt{3}}{4}, 1\right)$. Вектор \overrightarrow{CE}_1 имеет координаты $\left(\frac{1}{4}, -\frac{\sqrt{3}}{4}, 1\right)$. Косинус угла между прямыми AD_1 и CE_1 равен косинусу угла между векторами \overrightarrow{AD}_1 и \overrightarrow{CE}_1 . Воспользуемся формулой нахождения косинуса угла φ между векторами. Получим $\cos \varphi = 0,7$.

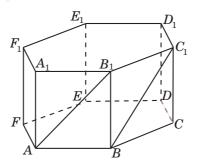


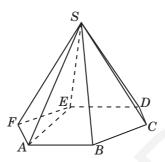
Тренировочная работа 1. Угол между прямыми

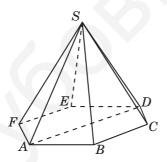

1. В кубе $A...D_1$ найдите косинус угла между прямыми AB и CA_1 .


2. В правильном тетраэдре ABCD точка E — середина ребра CD. Найдите косинус угла между прямыми BC и AE.

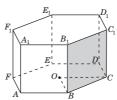

3. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите косинус угла между прямыми AB и CA_1 .


4. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точка E — середина ребра SD. Найдите тангенс угла между прямыми SB и AE.

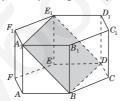

5. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите косинус угла между прямыми AB и FE_1 .


6. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите косинус угла между прямыми AB_1 и BC_1 .

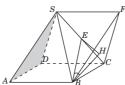
7. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите косинус угла между прямыми SB и AE.



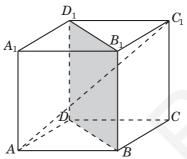
8. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите косинус угла между прямыми SB и AD.


Решения задач 2.1—2.3 диагностической работы

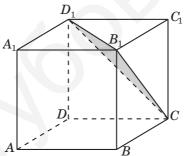
2.1. Решение. Пусть O — центр нижнего основания призмы. Прямая BO параллельна AF. Так как плоскости ABC и BCC_1 перпендикулярны, то искомым углом будет угол OBC. Так как треугольник OBC равносторонний, то этот угол будет равен 60° .


Ответ, 60°.

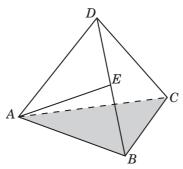
2.2. Решение. Так как прямые BB_1 и CC_1 параллельны, то искомый угол будет равен углу между прямой BB_1 и плоскостью BDE_1 . Прямая BD, через которую проходит плоскость BDE_1 , перпендикулярна плоскости ABB_1 и, значит, плоскость BDE_1 перпендикулярна плоскости ABB_1 . Следовательно, искомый угол будет равен углу A_1BB_1 , т. е. равен 45° .

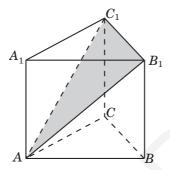

Ответ. 45°.

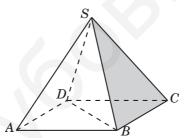
2.3. *Решение*. Через вершину *S* проведем прямую, параллельную прямой *AB*, и отложим на ней отрезок *SF*, равный отрезку *AB*. В тетраэдре *SBCF* все ребра равны 1 и плоскость *BCF* параллельна плоскости *SAD*. Перпендикуляр *EH*, опущенный из точки *E* на плоскость *BCF*, равен половине высоты тетраэдра, т. е. равен $\frac{\sqrt{6}}{6}$. Угол между прямой *BE* и плоскостью *SAD* равен углу *EBH*, синус которого равен $\frac{\sqrt{2}}{3}$.

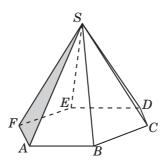


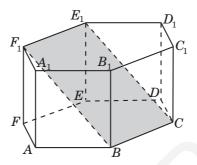
Тренировочная работа 2. Угол между прямой и плоскостью

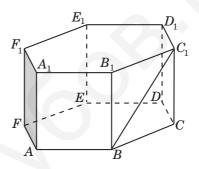

1. В кубе $A...D_1$ найдите тангенс угла между прямой AC_1 и плоскостью BDD_1 .


2. В кубе $A...D_1$ найдите синус угла между прямой AB и плоскостью CB_1D_1 .

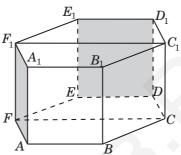

3. В правильном тетраэдре ABCD точка E — середина ребра BD. Найдите синус угла между прямой AE и плоскостью ABC.


4. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите тангенс угла между прямой BB_1 и плоскостью AB_1C_1 .

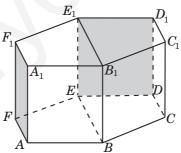

5. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите синус угла между прямой BD и плоскостью SBC.


6. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите синус угла между прямой BC и плоскостью SAF.

7. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите угол между прямой AA_1 и плоскостью BCE_1 .

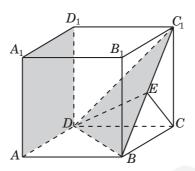


8. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите синус угла между прямой BC_1 и плоскостью AFF_1 .



Решения задач 3.1—3.3 диагностической работы

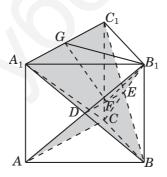
3.1. Первое решение. Так как плоскость FCC_1 параллельна плоскости DEE_1 , то искомый угол равен углу между плоскостями AFF_1 и FCC_1 . Так как плоскости AFF_1 и FCC_1 перпендикулярны плоскости ABC, то соответствующим линейным углом будет угол AFC, который равен 60° .


Второе решение. Так как плоскость AFF_1 параллельна плоскости BEE_1 , то искомый угол равен углу между плоскостями BEE_1 и DEE_1 . Так как плоскости BEE_1 и DEE_1 перпендикулярны плоскости ABC, то соответствующим линейным углом будет угол BED, который равен 60° .

Ответ. 60°.

3.2. Решение. Так как плоскость ADD_1 параллельна плоскости BCC_1 , то искомый угол равен углу между плоскостями BCC_1 и BDC_1 . Пусть E — середина отрезка BC_1 . Тогда прямые CE и DE будут перпендикулярны прямой BC_1 и, следовательно, угол CED будет линейным углом между плоскостями BCC_1 и BDC_1 . Треугольник CED прямоугольный, катет CD равен 1, катет CE равен $\frac{\sqrt{2}}{2}$. Следовательно,

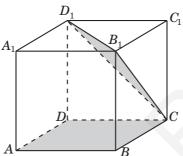
 $\operatorname{tg} \angle CED = \sqrt{2}$.

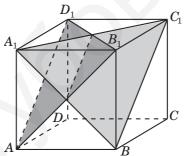


Ответ. $\sqrt{2}$.

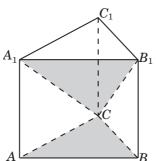
3.3. Пусть DE — линия пересечения данных плоскостей, F — середина отрезка DE, G — середина отрезка A_1C_1 . Угол GFB_1 является линейным углом между данными плоскостями. В треугольнике GFB_1 имеем:

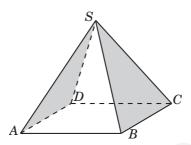
$$FG = FB_1 = \frac{\sqrt{7}}{4}, \quad GB_1 = \frac{\sqrt{3}}{2}.$$

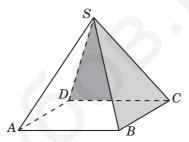

По теореме косинусов находим $\cos \angle GFB_1 = \frac{1}{7}$.

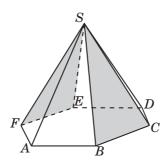

Ответ. $\frac{1}{7}$.

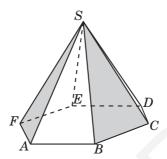
Тренировочная работа 3. Угол между двумя плоскостями

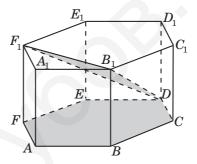

1. В кубе $A...D_1$ найдите тангенс угла между плоскостями ABC и CB_1D_1 .


 ${\bf 2.}$ В кубе $A...D_1$ найдите косинус угла между плоскостями $B\!A_1C_1$ и $AB_1D_1.$

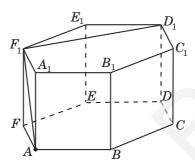

3. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите тангенс угла между плоскостями ABC и CA_1B_1 .


4. В правильной четырехугольной пирамиде *SABCD*, все ребра которой равны 1, найдите косинус угла между плоскостями *SAD* и *SBC*.


5. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите косинус двугранного угла, образованного гранями SBC и SCD.


6. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите косинус угла между плоскостями SBC и SEF.

7. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите косинус угла между плоскостями SAF и SBC.

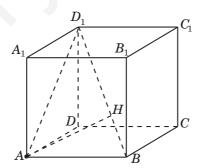


8. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите тангенс угла между плоскостями ABC и DB_1F_1 .

Решения задач 4.1—4.3 диагностической работы

4.1. *Решение.* Так как прямая D_1F_1 перпендикулярна плоскости AFF_1 , то отрезок AF_1 будет искомым перпендикуляром, опущенным из точки A на прямую D_1F_1 . Его длина равна $\sqrt{2}$.

Otbet, $\sqrt{2}$.


4.2. Первое решение. Искомым перпендикуляром является высота AH прямоугольного треугольника ABD_1 , в котором

$$AB = 1$$
, $AD_1 = \sqrt{2}$, $BD_1 = \sqrt{3}$.

Для площади S этого треугольника имеют место равенства

$$2S = AB \cdot AD_1 = BD_1 \cdot AH.$$

Откуда находим $AH = \frac{\sqrt{6}}{3}$.

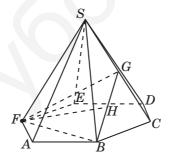
Второе решение. Искомым перпендикуляром является высота AH прямоугольного треугольника ABD_1 , в котором

$$AB = 1$$
, $AD_1 = \sqrt{2}$, $BD_1 = \sqrt{3}$.

Треугольники BAD_1 и BHA подобны по трем углам. Следовательно,

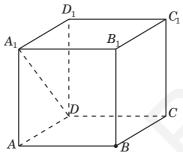
$$AD_1:BD_1=AH:AB.$$

Откуда находим $AH = \frac{\sqrt{6}}{3}$. *Третье решение.* Искомым перпендикуляром является высота AHпрямоугольного треугольника ABD_1 , в котором

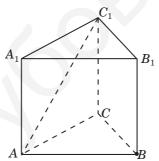

$$AB = 1$$
, $AD_1 = \sqrt{2}$, $BD_1 = \sqrt{3}$.

Откуда $\sin \angle ABD_1 = \frac{\sqrt{6}}{3}$ и, следовательно,

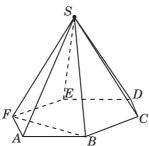
$$AH = AB \cdot \sin \angle ABH = \frac{\sqrt{6}}{3}.$$

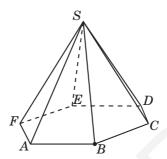

Ответ. $\frac{\sqrt{6}}{3}$.

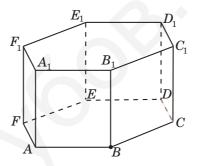
4.3. Искомое расстояние от точки F до прямой BG равно высоте FH треугольника FBG, в котором $FB = FG = \sqrt{3}$, $BG = \frac{\sqrt{6}}{2}$. По теореме Пифагора находим $FH = \frac{\sqrt{42}}{4}$.

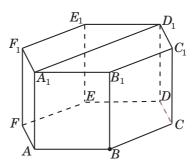


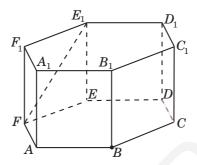
Тренировочная работа 4. Расстояние от точки до прямой

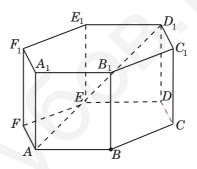

1. В единичном кубе $A...D_1$ найдите расстояние от точки B до прямой DA_1 .


2. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние от точки B до прямой AC_1 .


3. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки S до прямой BF.


4. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки B до прямой SA.

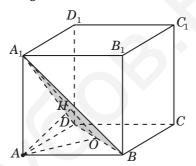

5. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки B до прямой A_1F_1 .


6. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки B до прямой A_1D_1 .

7. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки B до прямой FE_1 .

8. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки B до прямой AD_1 .

Решения задач 5.1—5.3 диагностической работы


5.1. Первое решение. Пусть O — середина отрезка BD. Прямая BD перпендикулярна плоскости AOA_1 . Следовательно, плоскости BDA_1 и AOA_1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA_1 , является высота AH прямоугольного треугольника AOA_1 , в котором

$$AA_1 = 1$$
, $AO = \frac{\sqrt{2}}{2}$, $OA_1 = \frac{\sqrt{6}}{2}$.

Для площади S этого треугольника имеют место равенства

$$2S = AO \cdot AA_1 = OA_1 \cdot AH.$$

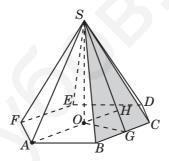
Откуда находим $AH = \frac{\sqrt{3}}{3}$.

Второе решение. Пусть O— середина отрезка BD. Прямая BD перпендикулярна плоскости AOA_1 . Следовательно, плоскости BDA_1 и AOA_1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA_1 , является высота AH прямоугольного треугольника AOA_1 , в котором

$$AA_1 = 1$$
, $AO = \frac{\sqrt{2}}{2}$, $OA_1 = \frac{\sqrt{6}}{2}$.

Треугольники AOA_1 и HOA подобны по трем углам. Следовательно, $AA_1:OA_1=AH:AO$. Откуда находим $AH=\frac{\sqrt{3}}{3}$.

Третье решение. Пусть O— середина отрезка BD. Прямая BD перпендикулярна плоскости AOA_1 . Следовательно, плоскости BDA_1 и AOA_1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA_1 , является высота AH прямоугольного треугольника AOA_1 , в котором


$$AA_1 = 1$$
, $AO = \frac{\sqrt{2}}{2}$, $OA_1 = \frac{\sqrt{6}}{2}$.

Откуда $\sin \angle AOA_1 = \frac{\sqrt{6}}{3}$ и, следовательно,

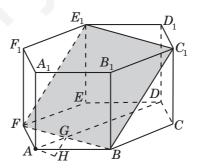
$$AH = AO \cdot \sin \angle AOH = \frac{\sqrt{3}}{3}.$$

Ответ. $\frac{\sqrt{3}}{3}$.

5.2. Первое решение. Пусть O — центр основания пирамиды. Прямая AO параллельна прямой BC и, значит, параллельна плоскости SBC. Следовательно, искомое расстояние равно расстоянию от точки O до плоскости SBC. Пусть G — середина отрезка BC. Тогда прямая OG перпендикулярна BC и искомым перпендикуляром, опущенным из точки O на плоскость SBC, является высота OH прямоугольного треугольника SOG. В этом треугольнике $OG = \frac{\sqrt{3}}{2}$, $SG = \frac{\sqrt{15}}{2}$, $SO = \sqrt{3}$. Для площади S этого треугольника имеют место равенства $2S = OG \cdot SO = SG \cdot OH$. Откуда находим $OH = \frac{\sqrt{15}}{5}$.

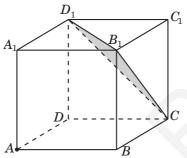
Второе решение. Пусть O — центр основания пирамиды. Прямая AO параллельна прямой BC и, значит, параллельна плоскости SBC. Следовательно, искомое расстояние равно расстоянию от точки O до плоскости SBC. Пусть G — середина отрезка BC. Тогда прямая OG перпендикулярна BC и искомым перпендикуляром, опущенным из точки O на плоскость SBC, является высота OH прямоугольного треугольника SOG. В этом треугольнике

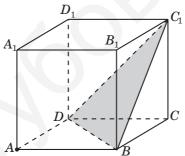
$$OG = \frac{\sqrt{3}}{2}, \quad SG = \frac{\sqrt{15}}{2}, \quad SO = \sqrt{3}.$$


Треугольники SOG и OHG подобны по трем углам. Следовательно, SO:SG=OH:OG. Откуда находим $OH=\frac{\sqrt{15}}{5}$.

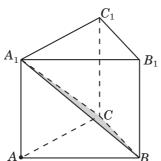
Ответ.
$$\frac{\sqrt{15}}{5}$$
.

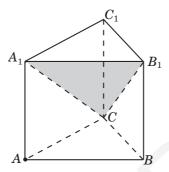
5.3. Первое решение. Пусть O и O_1 — центры оснований призмы. Прямая AO_1 параллельна плоскости BFE_1 и, следовательно, расстояние от точки A до плоскости BFE_1 равно расстоянию от прямой AO_1 до плоскости BFE_1 . Плоскость AOO_1 перпендикулярна плоскости BFE_1 и, следовательно, расстояние от прямой AO_1 до плоскости BFE_1 равно расстоянию от прямой AO_1 до линии пересечения GG_1 плоскостей AOO_1 и BFE_1 . Треугольник AOO_1 прямоугольный, $AO = OO_1 = 1$, GG_1 — его средняя линия. Следовательно, расстояние между прямыми AO_1 и GG_1 равно половине высоты OH треугольника AOO_1 , т. е. равно $\frac{\sqrt{2}}{4}$.

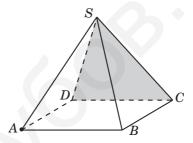

Второе решение. Пусть G — точка пересечения прямых AD и BF. Угол между прямой AD и плоскостью BFE_1 равен углу между прямыми BC и BC_1 и равен 45° . Перпендикуляр AH, опущенный из точки A на плоскость BFE_1 , равен $AG \cdot \sin 45^\circ$. Так как AG = 0,5, то $AH = \frac{\sqrt{2}}{4}$.

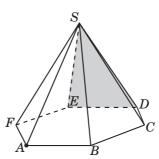

Ответ. $\frac{\sqrt{2}}{4}$.

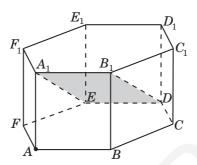
Тренировочная работа 5. Расстояние от точки до плоскости


1. В единичном кубе $A...D_1$ найдите расстояние от точки A до плоскости CB_1D_1 .


2. В единичном кубе $A...D_1$ найдите расстояние от точки A до плоскости BDC_1 .

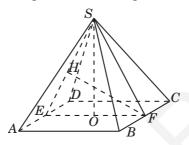

3. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние от точки A до плоскости BCA_1 .


4. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние от точки A до плоскости CA_1B_1 .


5. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите расстояние от точки A до плоскости SCD.


6. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки A до плоскости SDE.

7. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до плоскости DEA_1 .



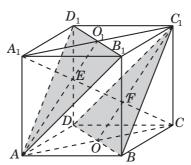
8. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до плоскости DEF_1 .

Решения задач 6.1—6.3 диагностической работы

6.1. Решение. Прямая BC параллельна плоскости SAD, в которой лежит прямая SA. Следовательно, расстояние между скрещивающимися прямыми SA и BC равно расстоянию от прямой BC до плоскости SAD.

Пусть E и F соответственно середины ребер AD и BC. Тогда искомым перпендикуляром будет высота FH треугольника SEF. В треугольнике SEF имеем:

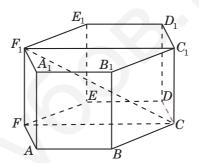
$$EF = 1$$
, $SE = SF = \frac{\sqrt{3}}{2}$,


высота SO равна $\frac{\sqrt{2}}{2}$. Для площади S треугольника SEF имеют место равенства

$$2S = EF \cdot SO = SE \cdot FH,$$

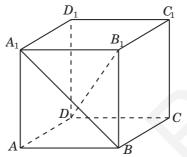
из которых получаем $FH = \frac{\sqrt{6}}{3}$.

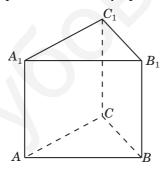
Ответ.
$$\frac{\sqrt{6}}{3}$$
.


6.2. *Решение.* Плоскости AB_1D_1 и BDC_1 , в которых лежат данные прямые, параллельны. Следовательно, расстояние между этими скрещивающимися прямыми равно расстоянию между соответствующими плоскостями.

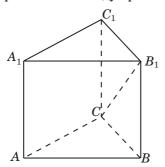
Диагональ CA_1 куба перпендикулярна этим плоскостям. Обозначим E и F точки пересечения диагонали CA_1 соответственно с плоскостями AB_1D_1 и BDC_1 . Длина отрезка EF будет равна расстоянию между прямыми AB_1 и BC_1 . Пусть O и O_1 соответственно центры граней ABCD и $A_1B_1C_1D_1$ куба. В треугольнике ACE отрезок OF параллелен AE и проходит через середину AC. Следовательно, OF — средняя линия треугольника ACE и, значит, EF = FC. Аналогично доказывается, что O_1E — средняя линия треугольника A_1C_1F и, значит, $A_1E = EF$. Таким образом, EF составляет одну треть диагонали CA_1 , т. е. $EF = \frac{\sqrt{3}}{3}$.

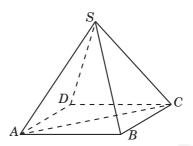
Ответ.
$$\frac{\sqrt{3}}{3}$$
.

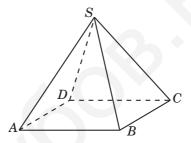

6.3. *Решение.* Расстояние между скрещивающимися прямыми AA_1 и CF_1 равно расстоянию между параллельными плоскостями ABB_1 и CFF_1 , в которых лежат эти прямые. Оно равно $\frac{\sqrt{3}}{2}$.

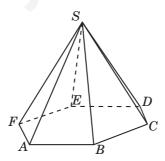

Ответ. $\frac{\sqrt{3}}{2}$.

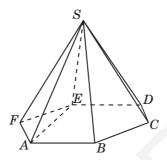
Тренировочная работа 6. Расстояние между двумя прямыми

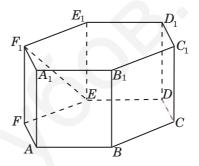

1. В единичном кубе $A...D_1$ найдите расстояние между прямыми BA_1 и DB_1 .


2. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние между прямыми CC_1 и AB.

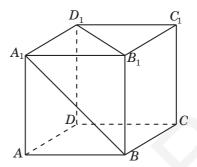

3. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние между прямыми AB и CB_1 .


4. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите расстояние между прямыми SB и AC.

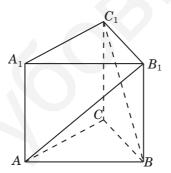

5. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите расстояние между прямыми SA и CD.


6. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние между прямыми SB и AF.

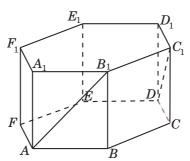
7. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние между прямыми SB и AE.

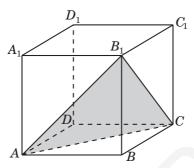


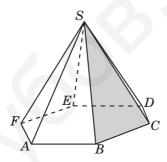
8. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние между прямыми BB_1 и EF_1 .

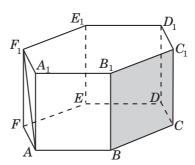


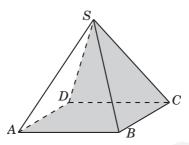
Диагностическая работа 1

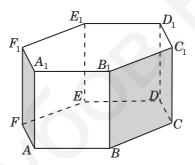

1. В кубе $A...D_1$ найдите угол между прямыми BA_1 и B_1D_1 .

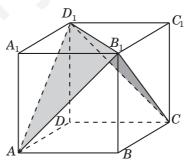

2. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите косинус угла между прямыми AB_1 и BC_1 .

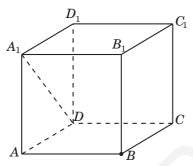

3. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите косинус угла между прямыми AB_1 и DC_1 .

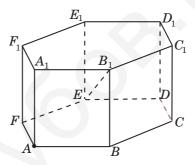

4. В кубе $A...D_1$ найдите синус угла между прямой A_1D_1 и плоскостью ACB_1 .

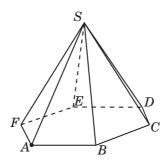

5. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите синус угла между прямой AB и плоскостью SBC.

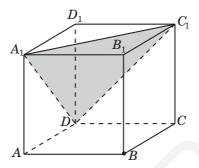

6. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите синус угла между прямой AF_1 и плоскостью BCC_1 .

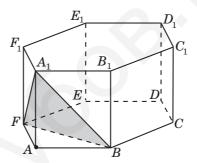

7. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите косинус угла между плоскостями ABC и SCD.

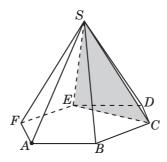

8. В правильной шестиугольной призме $A...F_1$ найдите угол между плоскостями AFF_1 и BCC_1 .

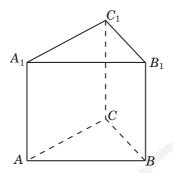

9. В кубе $A...D_1$ найдите косинус угла между плоскостями AB_1D_1 и CB_1D_1 .

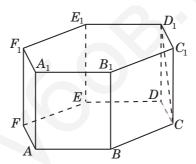

10. В единичном кубе $A...D_1$ найдите расстояние от точки B до прямой DA_1 .

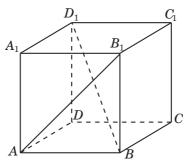

11. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до прямой EB_1 .


12. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки A до прямой SD.

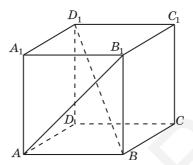

13. В единичном кубе $A...D_1$ найдите расстояние от точки B до плоскости DA_1C_1 .


14. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до плоскости BFA_1 .

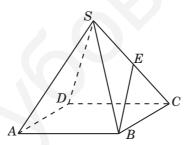

15. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки A до плоскости SCE.


16. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние между прямыми AA_1 и BC.

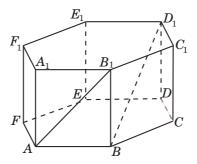
17. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние между прямыми BB_1 и CD_1 .

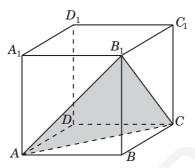


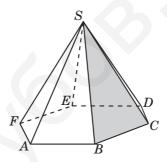
18. В единичном кубе $A...D_1$ найдите расстояние между прямыми AB_1 и BD_1 .

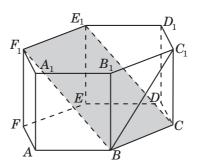


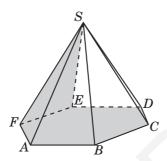
Диагностическая работа 2

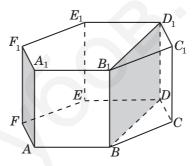

1. В кубе $A...D_1$ найдите угол между прямыми AB_1 и BD_1 .

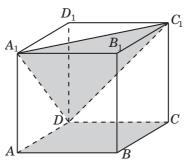

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точка E — середина ребра SC. Найдите тангенс угла между прямыми SA и BE.

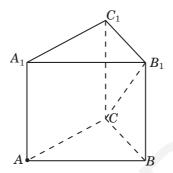

3. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите косинус угла между прямыми AB_1 и BD_1 .

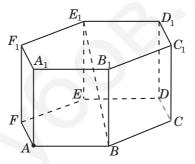

4. В кубе $A...D_1$ найдите синус угла между прямой DD_1 и плоскостью ACB_1 .

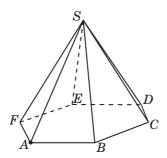

5. В правильной шестиугольной пирамиде *SABCDEF*, стороны основания которой равны 1, а боковые ребра равны 2, найдите синус угла между прямой AF и плоскостью SBC.

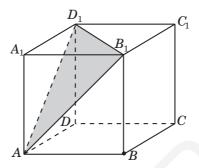

6. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите синус угла между прямой BC_1 и плоскостью BCE_1 .

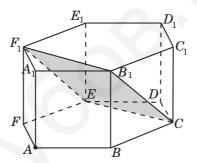

7. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите косинус угла между плоскостями ABC и SEF.

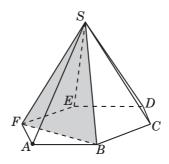

8. В правильной шестиугольной призме $A...F_1$ найдите угол между плоскостями AFF_1 и BDD_1 .

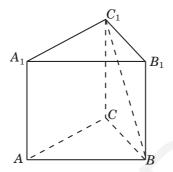

9. В кубе $A...D_1$ найдите тангенс угла между плоскостями ABC и DA_1C_1 .

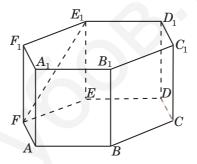

10. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние от точки A до прямой CB_1 .

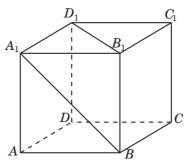

11. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до прямой BE_1 .


12. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки A до прямой SC.

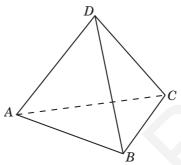

13. В единичном кубе $A...D_1$ найдите расстояние от точки B до плоскости AB_1D_1 .


14. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до плоскости CEF_1 .

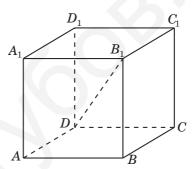

15. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки A до плоскости SBF.


16. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние между прямыми AA_1 и BC_1 .

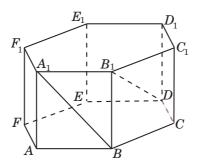
17. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние между прямыми BB_1 и FE_1 .

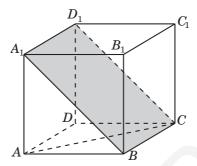


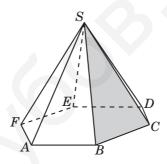
18. В единичном кубе $A...D_1$ найдите расстояние между прямыми BA_1 и B_1D_1 .

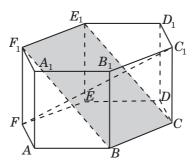


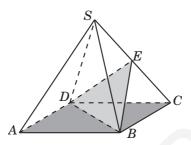
Диагностическая работа 3

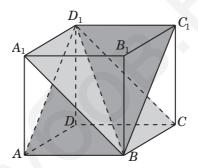

1. В правильном тетраэдре ABCD найдите угол между прямыми AB и CD.

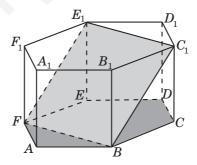

2. В кубе $A...D_1$ найдите тангенс угла между прямыми AB и DB_1 .

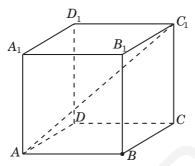

3. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите косинус угла между прямыми BA_1 и DB_1 .


4. В кубе $A...D_1$ найдите угол между прямой AC и плоскостью BCD_1 .

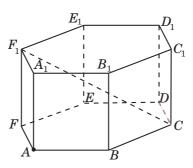

5. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите синус угла между прямой SA и плоскостью SBC.

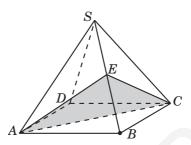

6. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите синус угла между прямой FC_1 и плоскостью BCE_1 .

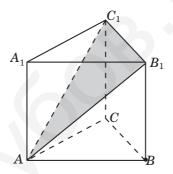

7. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точка E — середина ребра SC. Найдите угол между плоскостями ABC и BDE.

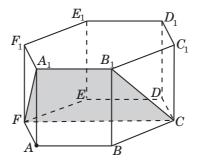

8. В кубе $A...D_1$ найдите угол между плоскостями ABC_1 и BCD_1 .

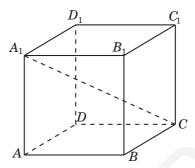

9. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите угол между плоскостями ABC и BFE_1 .

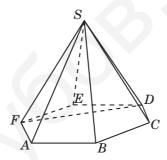

10. В единичном кубе $A...D_1$ найдите расстояние от точки B до прямой AC_1 .

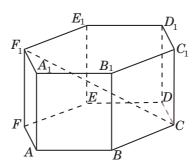

11. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки A до прямой SB.


12. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до прямой CF_1 .


13. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точка E — середина ребра SB. Найдите расстояние от точки B до плоскости ACE.


14. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите расстояние от точки B до плоскости AB_1C_1 .


15. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до плоскости CFA_1 .


16. В единичном кубе $A...D_1$ найдите расстояние между прямыми AB и CA_1 .

17. В правильной шестиугольной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние между прямыми SB и DF.

18. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние между прямыми BB_1 и CF_1 .

Ответы

Тренировочная работа 1

1.
$$\frac{\sqrt{3}}{3}$$
. 2. $\frac{\sqrt{3}}{6}$. 3. $\frac{\sqrt{2}}{4}$. 4. $\sqrt{2}$. 5. $\frac{\sqrt{2}}{4}$. 6. $\frac{3}{4}$. 7. $\frac{\sqrt{3}}{4}$. 8. $\frac{1}{4}$.

Тренировочная работа 2

1.
$$\sqrt{2}$$
. 2. $\frac{\sqrt{3}}{3}$. 3. $\frac{\sqrt{2}}{3}$. 4. $\frac{\sqrt{3}}{2}$. 5. $\frac{\sqrt{3}}{3}$. 6. $\frac{\sqrt{15}}{5}$. 7. 60. 8. $\frac{\sqrt{6}}{4}$.

Тренировочная работа 3

1.
$$\sqrt{2}$$
. **2.** $\frac{1}{3}$. **3.** $\frac{2\sqrt{3}}{3}$. **4.** $\frac{1}{3}$. **5.** $-\frac{1}{3}$. **6.** 0,6. 7. 0,2. **8.** $\frac{2}{3}$.

Тренировочная работа 4

1.
$$\frac{\sqrt{6}}{2}$$
. 2. $\frac{\sqrt{14}}{4}$. 3. $\frac{\sqrt{13}}{2}$. 4. $\frac{\sqrt{15}}{4}$. 5. $\frac{\sqrt{7}}{2}$. 6. $\frac{\sqrt{7}}{2}$. 7. $\sqrt{3}$. 8. $\frac{2\sqrt{5}}{5}$.

Тренировочная работа 5

1.
$$\frac{2\sqrt{3}}{3}$$
. 2. $\frac{\sqrt{3}}{3}$. 3. $\frac{\sqrt{21}}{7}$. 4. $\frac{\sqrt{21}}{7}$. 5. $\frac{\sqrt{6}}{3}$. 6. $\frac{2\sqrt{15}}{5}$. 7. $\frac{\sqrt{3}}{2}$. 8. $\frac{2\sqrt{21}}{7}$.

Тренировочная работа 6

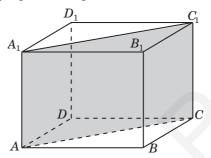
1.
$$\frac{\sqrt{6}}{6}$$
. 2. $\frac{\sqrt{3}}{2}$. 3. $\frac{\sqrt{21}}{7}$. 4. 0,5. 5. $\frac{\sqrt{6}}{3}$. 6. $\frac{\sqrt{3}}{2}$. 7. $\frac{2\sqrt{39}}{13}$. 8. $\sqrt{3}$.

Диагностическая работа 1

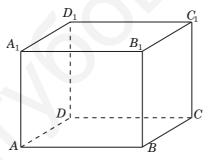
1.
$$60^{\circ}$$
. 2. $\frac{1}{4}$. 3. $\frac{3}{4}$. 4. $\frac{\sqrt{3}}{3}$. 5. $\frac{\sqrt{15}}{5}$. 6. $\frac{\sqrt{6}}{4}$. 7. $\frac{\sqrt{3}}{3}$. 8. 60 . 9. $\frac{1}{3}$. 10. $\frac{\sqrt{6}}{2}$. 11. $\frac{\sqrt{30}}{5}$. 12. $\sqrt{3}$. 13. $\frac{2\sqrt{3}}{3}$. 14. $\frac{\sqrt{5}}{5}$. 15. $\frac{3\sqrt{39}}{13}$. 16. $\frac{\sqrt{3}}{2}$. 17. $\frac{\sqrt{3}}{2}$. 18. $\frac{\sqrt{6}}{6}$.

Диагностическая работа 2

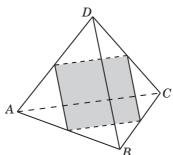
1. 90°. 2.
$$\sqrt{2}$$
. 3. $\frac{\sqrt{2}}{4}$. 4. $\frac{\sqrt{3}}{3}$. 5. $\frac{\sqrt{15}}{5}$. 6. $\frac{\sqrt{6}}{4}$. 7. $\frac{\sqrt{5}}{5}$. 8. 30. 9. $\sqrt{2}$. 10. $\frac{\sqrt{14}}{4}$. 11. $\frac{2\sqrt{5}}{5}$. 12. $\frac{\sqrt{39}}{4}$. 13. $\frac{\sqrt{3}}{3}$. 14. $\frac{3\sqrt{2}}{4}$. 15. $\frac{\sqrt{39}}{13}$. 16. $\frac{\sqrt{3}}{2}$. 17. $\sqrt{3}$. 18. $\frac{\sqrt{3}}{3}$.

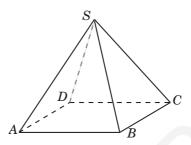

Диагностическая работа 3

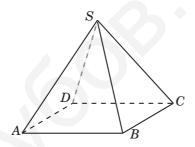
1. 90°. **2.**
$$\sqrt{2}$$
. **3.** $\frac{\sqrt{2}}{4}$. **4.** 30°. **5.** $\frac{\sqrt{15}}{10}$. **6.** $\frac{\sqrt{15}}{5}$. **7.** 45°. **8.** 60°. **9.** 45°. **10.** $\frac{\sqrt{6}}{3}$. **11.** $\frac{\sqrt{15}}{4}$. **12.** $\frac{\sqrt{30}}{5}$. **13.** 0,5. **14.** $\frac{\sqrt{21}}{7}$. **15.** $\frac{\sqrt{21}}{7}$. **16.** $\frac{\sqrt{2}}{2}$. **17.** $\frac{3\sqrt{3}}{4}$. **18.** $\frac{\sqrt{3}}{2}$.

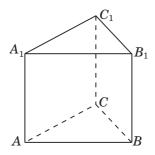

Приложение 1 Сечения многогранников

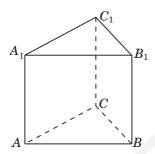
Диагностическая работа 1

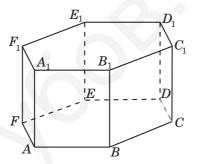

1. Найдите площадь четырехугольника, вершинами которого являются вершины A, C, A_1 , C_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ с ребрами которого AB=4, AD=3, $AA_1=4$.

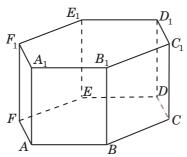

2. Найдите площадь четырехугольника, вершинами которого являются середины ребер AD, BC, AA_1 , BB_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ с ребрами AB=4, AD=4, $AA_1=3$.


3. Найдите площадь четырехугольника, вершинами которого являются середины ребер *AB*, *BC*, *CD*, *AD* единичного тетраэдра *ABCD*.

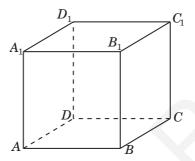

4. Найдите площадь треугольника, вершинами которого являются вершины S, B, D правильной четырехугольной пирамиды SABCD с ребрами, равными 1.


5. Найдите площадь четырехугольника, вершинами которого являются середины ребер *SA*, *SB*, *SC*, *SD* правильной четырехугольной пирамиды *SABCD* с ребрами, равными 1.

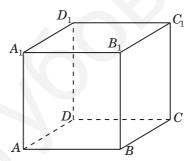

6. Найдите площадь четырехугольника, вершинами которого являются середины ребер AC, BC, A_1C_1 , B_1C_1 правильной треугольной призмы $ABCA_1B_1C_1$ с ребрами, равными 1.


7. Найдите площадь треугольника, вершинами которого являются вершины A_1 , C_1 , B правильной треугольной призмы $ABCA_1B_1C_1$ со стороной основания 2 и боковым ребром 1.

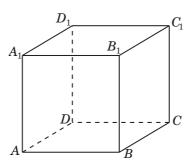
8. Найдите площадь четырехугольника, вершинами которого являются вершины $B,\ E,\ B_1,\ E_1$ правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$ с ребрами, равными 1.

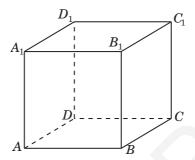


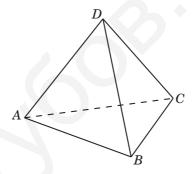
9. Найдите площадь четырехугольника, вершинами которого являются вершины $B,\ D,\ B_1,\ D_1$ правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$ со стороной основания 1 и боковым ребром $\sqrt{3}$.

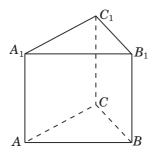


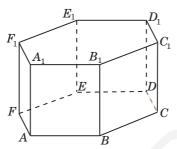
Диагностическая работа 2

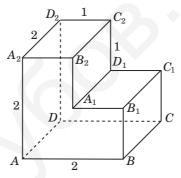

1. Изобразите сечение единичного куба $A...D_1$, проходящее через середины ребер AA_1 , BB_1 , B_1C_1 . Найдите его площадь.

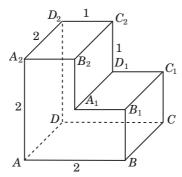

2. Изобразите сечение единичного куба $A...D_1$, проходящее через вершину A и середины ребер BB_1 , DD_1 . Найдите его площадь.


3. Изобразите сечение единичного куба $A...D_1$, проходящее через вершины A, C и середину ребра C_1D_1 . Найдите его площадь.

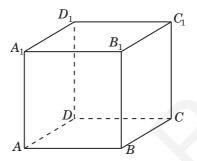

4. Изобразите сечение единичного куба $A...D_1$, проходящее через середины ребер AA_1 , CC_1 и точку на ребре AB, отстоящую от вершины A на 0,75. Найдите его площадь.


5. Изобразите сечение единичного тетраэдра *ABCD*, проходящее через середины ребер *AB*, *BC* и *CD*. Найдите его площадь.

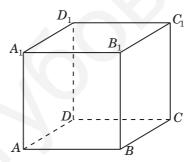

6. Изобразите сечение правильной треугольной призмы $ABCA_1B_1C_1$, проходящее через середины ребер AB, BC, A_1B_1 . Все ребра призмы равны 1. Найдите его площадь.


7. Изобразите сечение правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, проходящее через вершины A, D и C_1 . Все ребра призмы равны 1. Найдите его площадь.

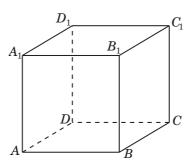
8. Изобразите сечение многогранника, изображенного на рисунке, проходящее через вершины A, B и C_2 . Все двугранные углы многогранника прямые. Найдите его площадь.

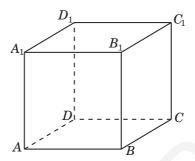


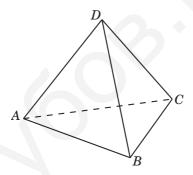
9. Изобразите сечение многогранника, изображенного на рисунке, проходящее через вершины $A,\,A_1$ и $D_2.$ Все двугранные углы многогранника прямые. Найдите его площадь.

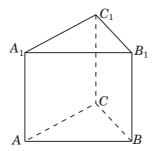


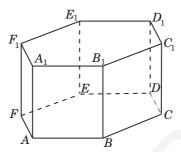
Тренировочная работа 1

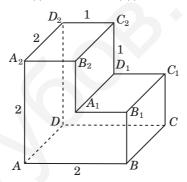

1. Изобразите сечение единичного куба $A...D_1$, проходящее через середины ребер BB_1 , CC_1 , A_1B_1 . Найдите его площадь.

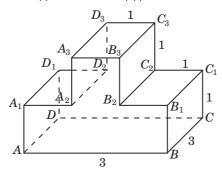

2. Изобразите сечение единичного куба $A...D_1$, проходящее через вершину B и середины ребер AA_1 , CC_1 . Найдите его площадь.


3. Изобразите сечение единичного куба $A...D_1$, проходящее через вершины A_1 , B и середину ребра CC_1 . Найдите его площадь.

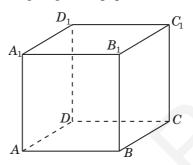

4. Изобразите сечение единичного куба $A...D_1$, проходящее через вершину D_1 и середины ребер AB, BC. Найдите его площадь.


5. Изобразите сечение единичного тетраэдра ABCD, проходящее через середины ребер AD, BD и BC. Найдите его площадь.

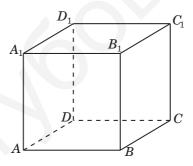

6. Изобразите сечение правильной треугольной призмы $ABCA_1B_1C_1$, проходящее через вершины A_1 , B_1 и середину ребра AC. Все ребра призмы равны 1. Найдите его площадь.


7. Изобразите сечение правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, проходящее через вершины A, C и D_1 . Все ребра призмы равны 1. Найдите его площадь.

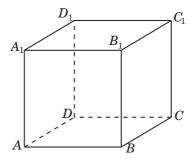
8. Изобразите сечение многогранника, изображенного на рисунке, проходящее через вершины $A,\ A_2$ и C_2 . Все двугранные углы многогранника прямые. Найдите его площадь.

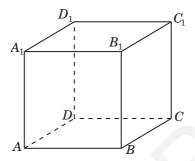


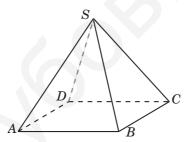
9. Изобразите сечение многогранника, изображенного на рисунке, проходящее через вершины A, B и C_3 . Все двугранные углы многогранника прямые. Найдите его площадь.

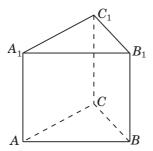


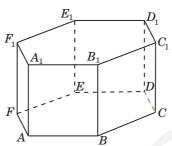
Тренировочная работа 2

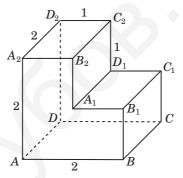

1. Изобразите сечение единичного куба $A...D_1$, проходящее через вершину A и середины ребер BC, B_1C_1 . Найдите его площадь.

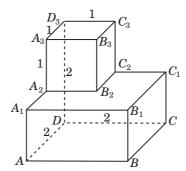

2. Изобразите сечение единичного куба $A...D_1$, проходящее через середины ребер AA_1 , CC_1 и точку на ребре BB_1 , отстоящую от вершины B на 0,25. Найдите его площадь.


3. Изобразите сечение единичного куба $A...D_1$, проходящее через вершину A и середины ребер CD, A_1D_1 . Найдите его площадь.

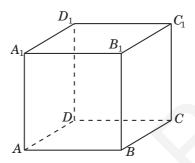

4. Изобразите сечение единичного куба $A...D_1$, проходящее через середины ребер BB_1 , DD_1 и точку на ребре AB, отстоящую от вершины A на 0,75. Найдите его площадь.


5. Изобразите сечение правильной четырехугольной пирамиды SABCD, проходящее через вершины A, B и середину ребра SC. Все ребра пирамиды равны 1. Найдите его площадь.

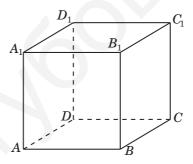

6. Изобразите сечение правильной треугольной призмы $ABCA_1B_1C_1$, проходящее через середины ребер AA_1 , BB_1 и A_1C_1 . Все ребра призмы равны 1. Найдите его площадь.


7. Изобразите сечение правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, проходящее через вершины $A,\ B$ и D_1 . Все ребра призмы равны 1. Найдите его площадь.

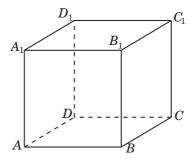
8. Изобразите сечение многогранника, изображенного на рисунке, проходящее через вершины B_1 , C_1 и D_2 . Все двугранные углы многогранника прямые. Найдите его площадь.

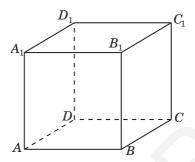


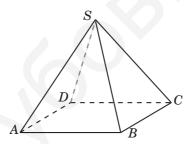
9. Изобразите сечение многогранника, изображенного на рисунке, проходящее через вершины A, B и C_3 . Все двугранные углы многогранника прямые. Найдите его площадь.

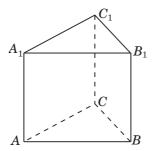


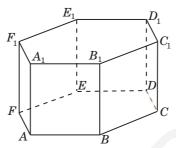
Диагностическая работа 3

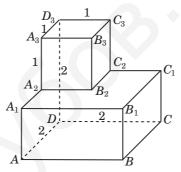

1. Изобразите сечение единичного куба $A...D_1$, проходящее через вершину C и середины ребер AD, A_1D_1 . Найдите его площадь.

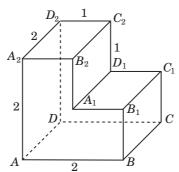

2. Изобразите сечение единичного куба $A...D_1$, проходящее через середины ребер A_1B_1 , CD и точку на ребре AB, отстоящую от вершины A на 0,25. Найдите его площадь.


3. Изобразите сечение единичного куба $A...D_1$, проходящее через вершины A_1 , C_1 и середину ребра AD. Найдите его площадь.


4. Изобразите сечение единичного куба $A...D_1$, проходящее через середины ребер AA_1 , CC_1 и точку на ребре AB, отстоящую от вершины A на 0,25. Найдите его площадь.

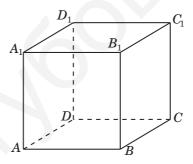

5. Изобразите сечение правильной четырехугольной пирамиды SABCD, проходящее через вершины B, C и середину ребра SA. Все ребра пирамиды равны 1. Найдите его площадь.


6. Изобразите сечение правильной треугольной призмы $ABCA_1B_1C_1$, проходящее через вершины $B,\ B_1$ и середину ребра AC. Все ребра призмы равны 1. Найдите его площадь.

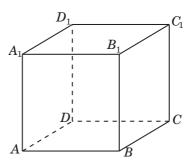

7. Изобразите сечение правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, проходящее через вершины B, D и E_1 . Все ребра призмы равны 1. Найдите его площадь.

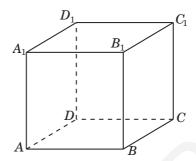
8. Изобразите сечение многогранника, изображенного на рисунке, проходящее через вершины A, B и C_2 . Все двугранные углы многогранника прямые. Найдите его площадь.

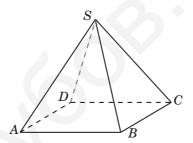
9. Изобразите сечение многогранника, изображенного на рисунке, проходящее через вершины A, C и A_2 . Все двугранные углы многогранника прямые. Найдите его площадь.

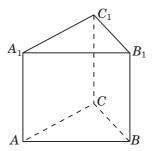


Диагностическая работа 4

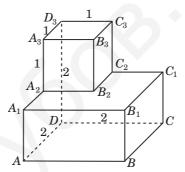

1. Изобразите сечение единичного куба $A...D_1$, проходящее через вершины $B,\,C,\,D_1$. Найдите его площадь.

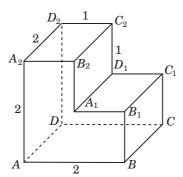

2. Изобразите сечение единичного куба $A...D_1$, проходящее через середины ребер AD, B_1C_1 и точку на ребре BC, отстоящую от вершины B на 0,25. Найдите его площадь.


3. Изобразите сечение единичного куба $A...D_1$, проходящее через середины ребер AB, BC, CC_1 . Найдите его площадь.


4. Изобразите сечение единичного куба $A...D_1$, проходящее через вершину B_1 и середины ребер AD, CD. Найдите его площадь.

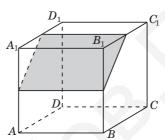
5. Изобразите сечение правильной четырехугольной пирамиды SABCD, проходящее через середины ребер AD, BC и SD. Все ребра пирамиды равны 1. Найдите его площадь.


6. Изобразите сечение правильной треугольной призмы $ABCA_1B_1C_1$, проходящее через вершины A, B и середину ребра A_1C_1 . Все ребра призмы равны 1. Найдите его площадь.

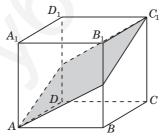

7. Изобразите сечение правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, проходящее через вершины C, F и E_1 . Все ребра призмы равны 1. Найдите его площадь.

8. Изобразите сечение многогранника, изображенного на рисунке, проходящее через вершины A, A_1 и C_3 . Все двугранные углы многогранника прямые. Найдите его площадь.

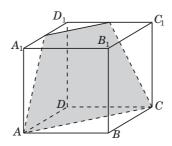
9. Изобразите сечение многогранника, изображенного на рисунке, проходящее через вершины A, A_1 и C_2 . Все двугранные углы многогранника прямые. Найдите его площадь.

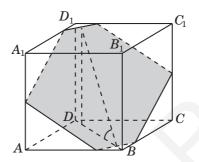

Ответы и решения

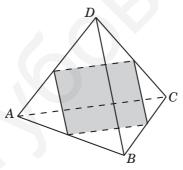
Диагностическая работа 1

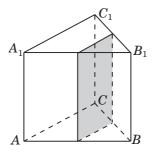

1. 20. **2.** 10. **3.** 0,25. **4.** 0,5. **5.** 0,5. **6.** 0,5. **7.** 2. **8.** 2. **9.** 3.

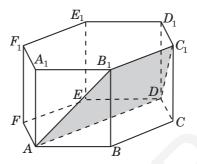
Диагностическая работа 2

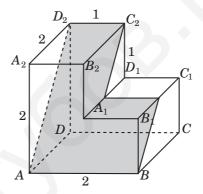

1. Сечением является прямоугольник, площадь которого равна $\frac{\sqrt{2}}{2}$.

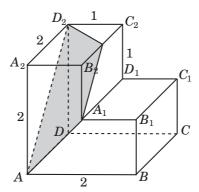

2. Сечением является ромб, площадь которого равна $\frac{\sqrt{6}}{2}$.


3. Сечением является трапеция, площадь которой равна $1\frac{1}{8}$.

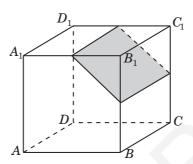

4. Сечением является шестиугольник. Площадь его ортогональной проекции на плоскость ABC равна $\frac{15}{16}$, косинус угла между плоскостью сечения и плоскостью ABC равен $\frac{3}{\sqrt{17}}$. Площадь сечения равна $\frac{5\sqrt{17}}{16}$.


5. Сечением является прямоугольник, площадь которого равна 0,25.

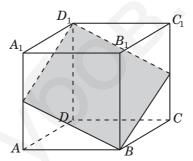

6. Сечением является прямоугольник, площадь которого равна 0,5.


7. Сечением является равнобедренная трапеция, площадь которой равна $\frac{3\sqrt{7}}{4}$.

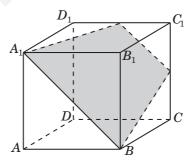
8. Площадь сечения равна $3\sqrt{2}$.

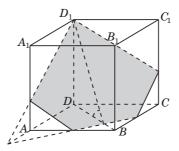


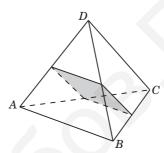
9. Площадь сечения равна $\frac{3\sqrt{3}}{2}$.

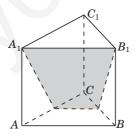


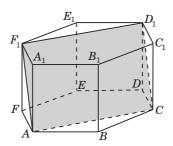
Тренировочная работа 1

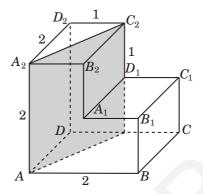

1. Ответ. $\frac{\sqrt{2}}{2}$.

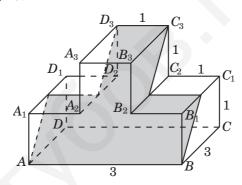

2. Ответ. $\frac{\sqrt{6}}{2}$.


3. Ответ. $1\frac{1}{8}$.

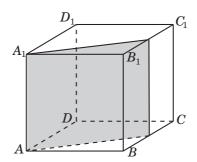

4. Ответ. $\frac{7\sqrt{17}}{24}$.


5. Ответ. 0,25.

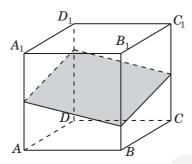

6. Ответ. $\frac{3\sqrt{19}}{16}$.


7. Ответ. $\sqrt{6}$.

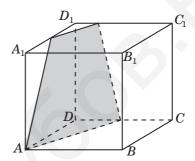
8. Ответ. $2\sqrt{5}$.

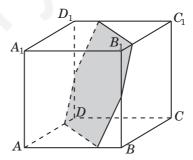


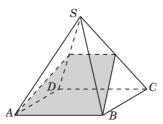
9. Ответ. $2\sqrt{13}$.

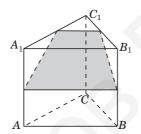


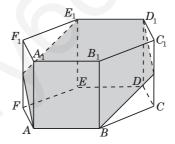
Тренировочная работа 2

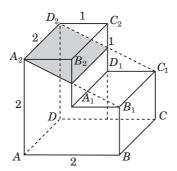

1. Ответ. $\frac{\sqrt{5}}{2}$.

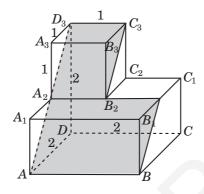

2. Ответ. $\frac{3\sqrt{2}}{4}$.


3. Ответ. $\frac{3\sqrt{21}}{16}$.

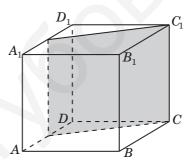

4. Ответ. $1\frac{5}{16}$.


5. Ответ. $\frac{3\sqrt{11}}{16}$.

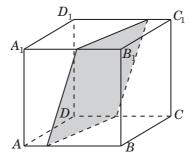

6. Ответ. $\frac{3\sqrt{7}}{16}$.


7. Ответ. 3.

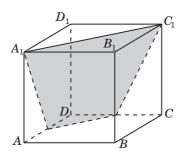
8. Ответ. $\sqrt{5}$.

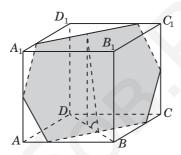


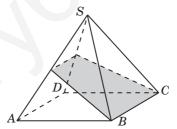
9. Ответ. $3\sqrt{2}$.

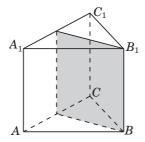


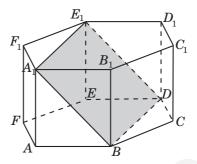
Диагностическая работа 3

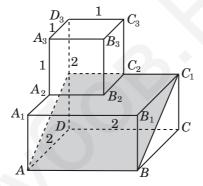

1. Ответ. $\frac{\sqrt{5}}{2}$.

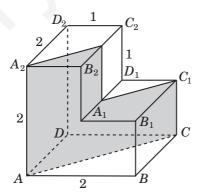

2. Ответ. $\frac{3\sqrt{2}}{4}$.


3. Ответ. $1\frac{1}{8}$.

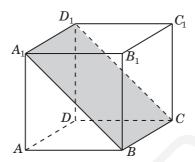

4. Ответ. $1\frac{5}{16}$.


5. Ответ. $\frac{3\sqrt{11}}{16}$.

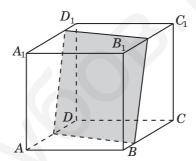

6. Ответ. $\frac{\sqrt{3}}{2}$.


7. Ответ. $\sqrt{6}$.

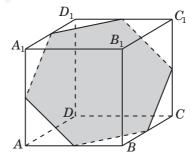
8. Ответ. $2\sqrt{5}$.

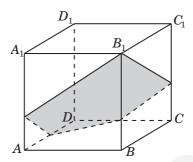


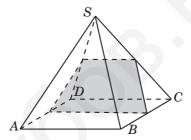
9. Ответ. $3\sqrt{2}$.

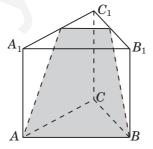


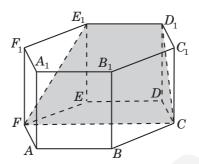
Диагностическая работа 4

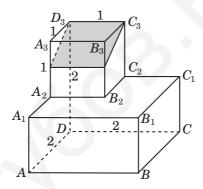

1. Ответ. $\sqrt{2}$.

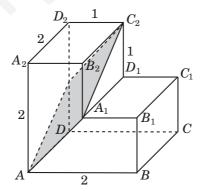

2. Ответ. $\frac{3\sqrt{2}}{4}$.


3. Ответ. $\frac{3\sqrt{3}}{4}$.

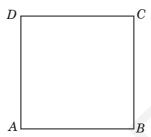

4. Otbet. $\frac{7\sqrt{17}}{24}$.


5. Ответ. $\frac{3\sqrt{3}}{16}$.


6. Ответ. $\frac{3\sqrt{19}}{16}$

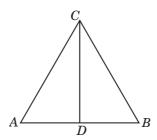

7. Ответ. $\frac{3\sqrt{7}}{4}$.

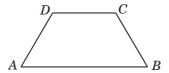
8. Ответ. $\frac{\sqrt{5}}{2}$.

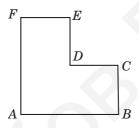

9. Ответ. 3.

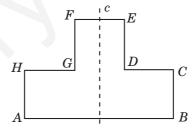

Приложение 2 Тела и поверхности вращения

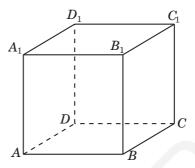
Диагностическая работа 1

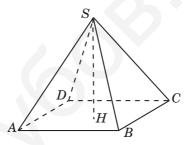

1. Найдите площадь боковой поверхности цилиндра, полученного вращением единичного квадрата ABCD вокруг прямой AD.

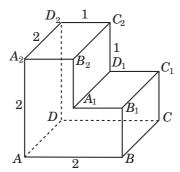

2. Найдите площадь боковой поверхности конуса, полученного вращением прямоугольного треугольника ABC с катетами AC = BC = 1 вокруг прямой AC.


3. Найдите площадь полной поверхности конуса, полученного вращением равностороннего треугольника ABC со стороной 1 вокруг прямой, содержащей биссектрису CD этого треугольника.

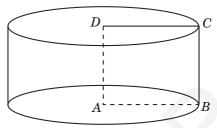

4. Найдите объем тела вращения равнобедренной трапеции ABCD с боковыми сторонами AD и BC, равными 1, и основаниями AB и CD, равными соответственно 2 и 1, вокруг прямой AB.


5. Найдите объем тела вращения многоугольника ABCDEF, изображенного на рисунке и составленного из трех единичных квадратов, вокруг прямой AF.

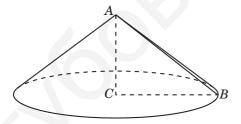

6. Найдите объем тела вращения многоугольника ABCDEFGH, изображенного на рисунке и составленного из четырех единичных квадратов, вокруг прямой c, проходящей через середины сторон AB и EF.


7. Найдите объем тела вращения единичного куба $ABCDA_1B_1C_1D_1$ вокруг прямой AA_1 .

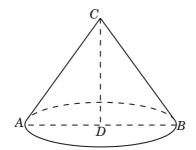
8. Найдите объем тела вращения правильной четырехугольной пирамиды SABCD, все ребра которой равны 1, вокруг прямой, содержащей высоту SH этой пирамиды.

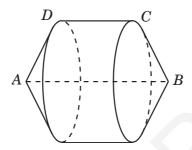


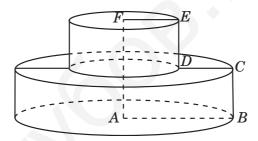
9. Все двугранные углы многогранника, изображенного на рисунке, прямые. Найдите объем тела вращения этого многогранника вокруг прямой AD.

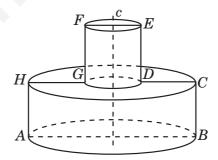


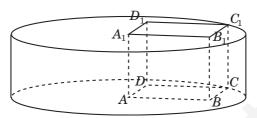
Решения задач диагностической работы

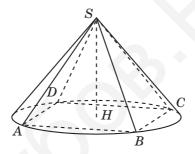

1. Искомый цилиндр изображен на рисунке. Радиус его основания и образующая равны 1. Площадь боковой поверхности этого цилиндра равна 2π .

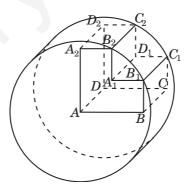

2. Искомый конус изображен на рисунке. Радиус его основания равен 1, а образующая равна $\sqrt{2}$. Площадь боковой поверхности этого конуса равна $\sqrt{2}\pi$.


3. Искомый конус изображен на рисунке. Радиус его основания равен 0,5, а образующая равна 1. Площадь полной поверхности этого конуса равна $\frac{3\pi}{4}$.

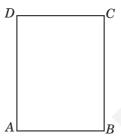

4. Искомым телом вращения является цилиндр с радиусом основания $\frac{\sqrt{3}}{2}$ и высотой 1, на основаниях которого достроены конусы, высотой 0,5. Его объем равен π .


5. Искомое тело вращения состоит из двух цилиндров с основаниями радиусов 2 и 1, высотой 1. Его объем равен 5π .


6. Искомое тело вращения составлено из двух цилиндров высотой 1 и радиусами оснований 1,5 и 0,5. Его объем равен $2,5\pi$.


7. Искомым телом вращения является цилиндр, радиус основания которого равен $\sqrt{2}$, а высота равна 1. Его объем равен 2π .

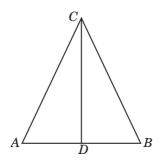
8. Искомым телом вращения является конус, радиус основания и высота которого равны $\frac{\sqrt{2}}{2}$. Его объем равен $\frac{\sqrt{2}\pi}{12}$.

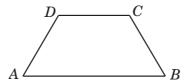


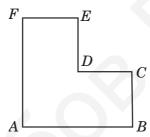
9. Искомым телом вращения является цилиндр, радиус основания которого равен $\sqrt{5}$, а высота равна 2. Его объем равен 10π .

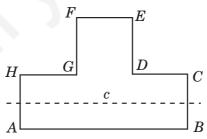


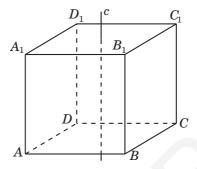
Тренировочная работа 1

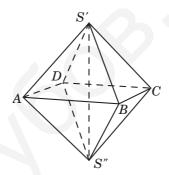

1. Найдите площадь боковой поверхности цилиндра, полученного вращением прямоугольника ABCD со сторонами AB=3, BC=4 вокруг прямой AD.

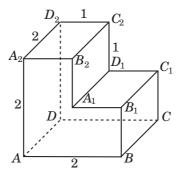

2. Найдите площадь боковой поверхности конуса, полученного вращением прямоугольного треугольника ABC с катетами AC=3, BC=4 вокруг прямой AC.


3. Найдите площадь полной поверхности конуса полученного вращением равнобедренного треугольника ABC с основанием AB=2 и боковой стороной, равной 3, вокруг прямой, содержащей биссектрису CD этого треугольника.

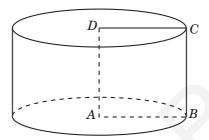

4. Найдите объем тела вращения равнобедренной трапеции ABCD с боковыми сторонами AD и BC, равными 1, и основаниями AB и CD, равными соответственно 2 и 1, вокруг прямой CD.


5. Найдите объем тела вращения многоугольника ABCDEF, изображенного на рисунке и составленного из трех единичных квадратов, вокруг прямой DE.

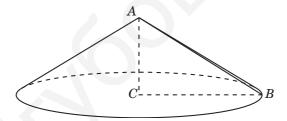

6. Найдите объем тела вращения многоугольника ABCDEFGH, изображенного на рисунке и составленного из четырех единичных квадратов, вокруг прямой c, проходящей через середины сторон AH и BC.


7. Найдите объем тела вращения единичного куба $ABCDA_1B_1C_1D_1$ вокруг прямой c, проходящей через центры граней ABCD и $A_1B_1C_1D_1$.

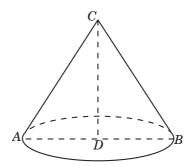
8. Найдите объем тела вращения единичного правильного октаэдра S'ABCDS'' вокруг прямой S'S''.

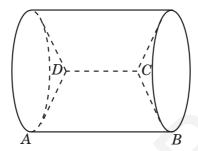


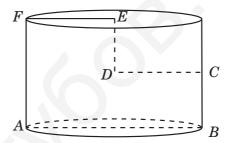
9. Все двугранные углы многогранника, изображенного на рисунке, прямые. Найдите объем тела вращения этого многогранника вокруг прямой CD.

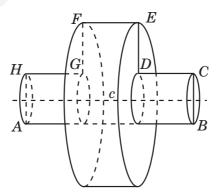


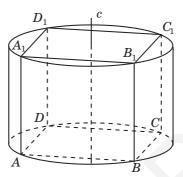
Решения задач тренировочной работы 1

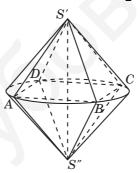

1. Искомый цилиндр изображен на рисунке. Радиус его основания равен 3, а образующая равна 4. Площадь боковой поверхности этого цилиндра равна 24π .

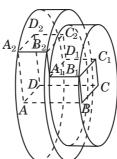

2. Искомый конус изображен на рисунке. Радиус его основания равен 4, а образующая равна 5. Площадь боковой поверхности этого конуса равна 20π .


3. Искомый конус изображен на рисунке. Радиус его основания равен 1, а образующая равна 3. Площадь полной поверхности этого конуса равна 4π .


4. Искомым телом вращения является цилиндр с радиусом основания $\frac{\sqrt{3}}{2}$ и высотой 2, на основаниях которого вырезаны конусы, высотой 0,5. Его объем равен 1,25 π .

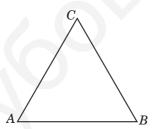

5. Искомое тело вращения является цилиндром с основанием радиуса 1 и высотой 2. Его объем равен 2π .


6. Искомое тело вращения является цилиндром с основанием радиуса 1,5 и высотой 1, на основания которого поставлены два цилиндра с основаниями радиуса 0,5 и высотой 1. Его объем равен $2,75\pi$.

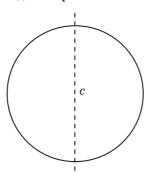

7. Искомым телом вращения является цилиндр, радиус основания которого равен $\frac{\sqrt{2}}{2}$, а высота равна 1. Его объем равен 0.5π .

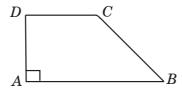
8. Искомое тело вращения состоит из двух конусов с общим основанием радиуса $\frac{\sqrt{2}}{2}$ и высотами, равными $\frac{\sqrt{2}}{2}$. Его объем равен $\frac{\sqrt{2}\pi}{6}$.

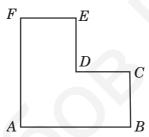
9. Искомое тело вращения составлено из двух цилиндров, радиусы оснований которых равны $2\sqrt{2},\,\sqrt{5},\,$ а высоты равны 1. Его объем равен $13\pi.$

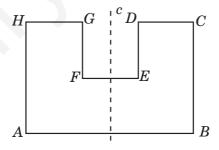


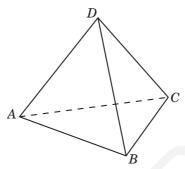
Тренировочная работа 2

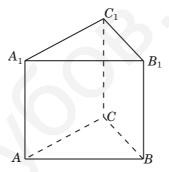

1. Найдите площадь поверхности вращения прямоугольника ABCD со сторонами AB=4, BC=3 вокруг прямой, проходящей через середины сторон AB и CD.

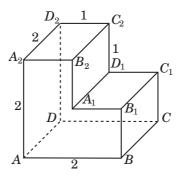

2. Найдите площадь поверхности вращения равностороннего треугольника ABC со стороной 1 вокруг прямой AB.


3. Найдите площадь поверхности вращения круга радиуса 2 вокруг прямой, содержащей его диаметр.

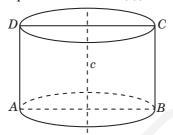

4. Найдите объем тела вращения прямоугольной трапеции ABCD с основаниями AB и CD, равными соответственно 2 и 1, и меньшей боковой стороной, равной 1, вокруг прямой AB.


5. Найдите объем тела вращения многоугольника ABCDEF, изображенного на рисунке и составленного из трех единичных квадратов, вокруг прямой BC.

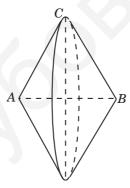

6. Найдите объем тела вращения многоугольника ABCDEFGH, изображенного на рисунке и составленного из пяти единичных квадратов, вокруг прямой c, проходящей через середины сторон AB и EF.


7. Найдите объем тела вращения единичного тетраэдра ABCD вокруг ребра AB.

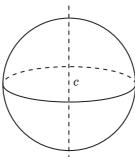
8. Найдите объем тела вращения правильной треугольной призмы $ABCA_1B_1C_1$, все ребра которой равны 1, вокруг прямой AA_1 .

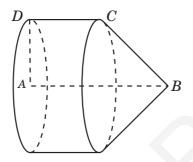


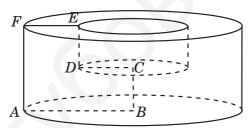
9. Все двугранные углы многогранника, изображенного на рисунке, прямые. Найдите объем тела вращения этого многогранника вокруг прямой AA_2 .

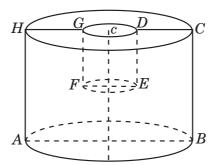


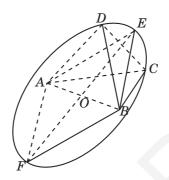
Решения задач тренировочной работы 2

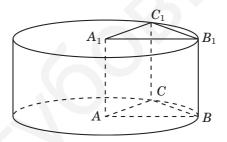

1. Искомым телом является цилиндр, радиус основания которого равен 2, а образующая равна 3. Его площадь поверхности равна 20π .

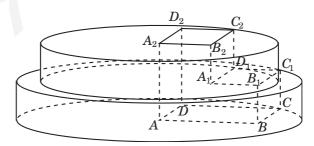

2. Искомое тело вращения составлено из двух конусов с общим основанием, радиус которого равен $\frac{\sqrt{3}}{2}$, с высотами по 0,5. Его площадь поверхности равна $\sqrt{3}\pi$.


3. Искомым телом вращения является шар радиуса 2. Площадь его поверхности равна 16π .

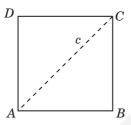

4. Искомым телом вращения является цилиндр с радиусом основания и высотой, равными 1, на основании которого достроен конус высотой 1. Его объем равен $\frac{4\pi}{3}$.


5. Искомое тело вращения является цилиндром с основанием радиуса 2 и высотой 2, из которого вырезан цилиндр с основанием радиуса 1 и высотой 1. Его объем равен 7π .

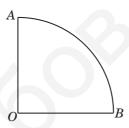

6. Искомое тело вращения является цилиндром с радиусом основания 1,5 и высотой 2, из которого вырезан цилиндр с радиусом основания 0,5 и высотой 1. Его объем равен $4,25\pi$.


7. Искомое тело вращения составлено из двух конусов с общим основанием радиуса $\frac{\sqrt{3}}{2}$ и высотой 0,5. Его объем равен 0,25 π .

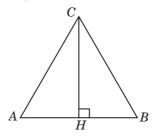
8. Искомым телом вращения является цилиндр, радиус основания и высота которого равны 1. Его объем равен π .

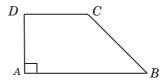


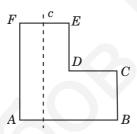
9. Искомое тело вращения составлено из двух цилиндров, радиусы оснований которых равны $2\sqrt{2}, \sqrt{5},$ а высоты равны 1. Его объем равен 13π .

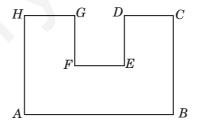


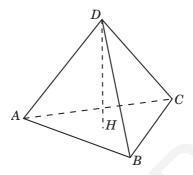
Диагностическая работа 2

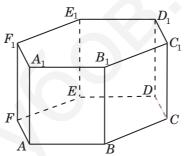

1. Найдите площадь поверхности тела, полученного вращением единичного квадрата ABCD вокруг прямой AC.

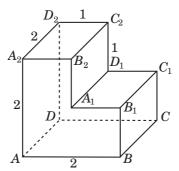

2. Найдите площадь поверхности вращения четверти круга радиуса 2 вокруг прямой OA.


3. Найдите объем тела вращения равностороннего треугольника ABC со сторонами, равными 1, вокруг прямой, содержащей высоту CH этого треугольника.

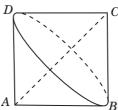

4. Найдите объем тела вращения прямоугольной трапеции ABCD с основаниями AB и CD, равными соответственно 2 и 1, и меньшей боковой стороной, равной 1, вокруг прямой AD.


5. Найдите объем тела вращения многоугольника ABCDEF, изображенного на рисунке и составленного из трех единичных квадратов, вокруг прямой c, проходящей через середину стороны FE и параллельной прямой AF.

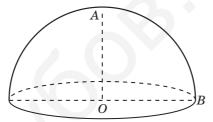

6. Найдите объем тела вращения многоугольника ABCDEFGH, изображенного на рисунке и составленного из пяти единичных квадратов, вокруг прямой AB.


7. Найдите объем тела вращения единичного тетраэдра ABCD вокруг прямой c, содержащей высоту DH этого тетраэдра.

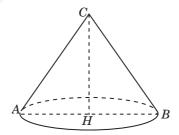
8. Найдите объем тела вращения правильной шестиугольной призмы $ABCDEFA_1B_1C_1D_1E_1F_1$, все ребра которой равны 1, вокруг прямой AA_1 .

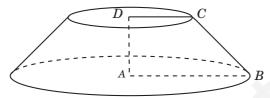


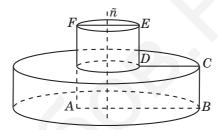
9. Все двугранные углы многогранника, изображенного на рисунке, прямые. Найдите объем тела вращения этого многогранника вокруг прямой DD_2 .

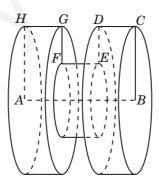


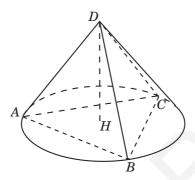
Решения задач диагностической работы 2

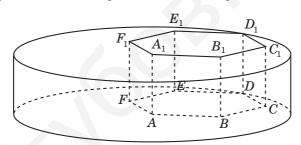

1. Искомым телом вращения является объединение двух конусов, радиус основания которых и высоты равны $\frac{\sqrt{2}}{2}$. Его площадь поверхности равна $\sqrt{2}\pi$.

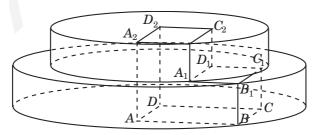

2. Искомым телом является полушар радиуса 2. Площадь его поверхности равна 12π .


3. Искомым телом вращения является конус, радиус основания которого равен 0,5, а высота — $\frac{\sqrt{3}}{2}$. Его объем равен $\frac{\sqrt{3}\pi}{24}$.

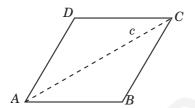

4. Искомым телом вращения является усеченный конус, радиусы оснований которого равны 2 и 1, а высота равна 1. Его объем равен $\frac{7\pi}{3}$.


5. Искомое тело вращения состоит из двух цилиндров, радиусы оснований которых равны 1,5 и 0,5, а высоты равны 1. Его объем равен 2.5π .

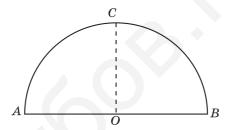

6. Искомое тело вращения состоит из трех цилиндров с основаниями радиусов 2, 1, 2 и высотами, равными 1. Его объем равен 9π .


7. Искомым телом вращения является конус, радиус основания которого равен $\frac{\sqrt{3}}{3}$, а высота равна $\frac{\sqrt{6}}{3}$. Его объем равен $\frac{\sqrt{6}\pi}{27}$.

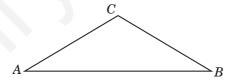
8. Искомым телом вращения является цилиндр, радиус основания которого равен 2, а высота равна 1. Его объем равен 4π .

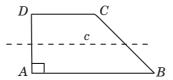


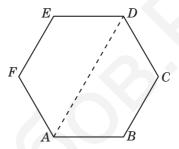
9. Искомое тело вращения составлено из двух цилиндров, радиусы оснований которых равны $2\sqrt{2},\,\sqrt{5},\,$ а высоты равны 1. Его объем равен $13\pi.$

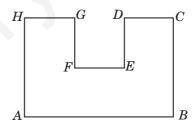


Диагностическая работа 3

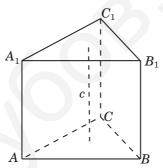

1. Найдите площадь поверхности тела вращения ромба *ABCD* со сторонами, равными 1, и острым углом 60° , вокруг прямой *AC*.

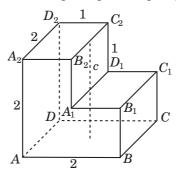

2. Найдите площадь поверхности вращения полукруга радиуса 3 вокруг прямой OC, перпендикулярной диаметру AB.


3. В равнобедренном треугольнике $ABC\ AC=BC=1,\ \angle C=120^\circ.$ Найдите объем тела вращения этого треугольника вокруг прямой AB.

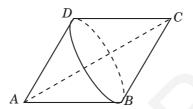

4. Найдите объем тела вращения прямоугольной трапеции ABCD с основаниями AB и CD, равными соответственно 2 и 1, и меньшей боковой стороной, равной 1, вокруг прямой c, содержащей среднюю линию этой трапеции.

5. Найдите объем тела вращения правильного шестиугольника ABCDEF со стороной 1 вокруг прямой AD.

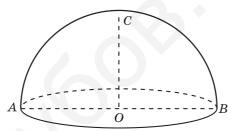

6. Найдите объем тела вращения многоугольника ABCDEFGH, изображенного на рисунке и составленного из пяти единичных квадратов, вокруг прямой EF.


7. Найдите объем тела вращения правильной шестиугольной пирамиды SABCDEF, стороны основания которой равны 1, а боковые ребраравны 2, вокруг прямой c, содержащей высоту SH этой пирамиды.

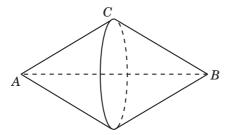
8. Найдите объем тела вращения правильной треугольной призмы $ABCA_1B_1C_1$, все ребра которой равны 1, вокруг прямой c, проходящей через центры граней ABC и $A_1B_1C_1$.

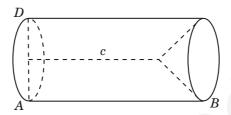


9. Все двугранные углы многогранника, изображенного на рисунке, прямые. Найдите объем тела вращения этого многогранника вокруг прямой c, проходящей через середины ребер A_1D_1 и B_2C_2 .

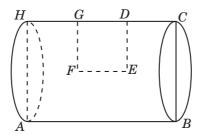


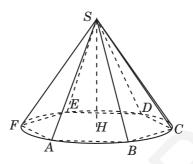
Решение задач диагностической работы 3

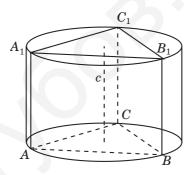

1. Искомым телом вращения является объединение двух конусов с общим основанием радиуса 0,5, высоты которых равны $\frac{\sqrt{3}}{2}$. Его площадь поверхности равна π .

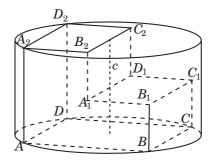

2. Искомым телом является полушар радиуса 3. Площадь его поверхности равна 27π .

3. Искомое тело вращения составлено из двух конусов с общим основанием, радиус которого равен 0,5, а высоты равны $\frac{\sqrt{3}}{2}$. Его объем равен $\frac{\sqrt{3}\pi}{12}$.


4. Искомым телом вращения является цилиндр с радиусом основания 0,5 и высотой 2, из которого вырезан конус, радиус основания и высота которого равны 0,5. Его объем равен $\frac{11\pi}{24}$.


5. Искомое тело вращения состоит из цилиндра, радиус основания которого равен $\frac{\sqrt{3}}{2}$, а высота равна 1, и двух конусов с основаниями радиуса $\frac{\sqrt{3}}{2}$ и высотой 0,5. Его объем равен π .


6. Искомое тело вращения является цилиндром с основанием радиуса 1 и высотой 3. Его объем равен 3π .


7. Искомым телом вращения является конус, радиус основания и которого равен 1, а высота — $\sqrt{3}$. Его объем равен $\frac{\sqrt{3}\pi}{3}$.

8. Искомым телом вращения является цилиндр, радиус основания которого равен $\frac{\sqrt{3}}{3}$, а высота равна 1. Его объем равен $\frac{\pi}{3}$.

9. Искомым телом вращения является цилиндр, радиус основания которого равен $\sqrt{2}$, а высота равна 2. Его объем равен 4π .

Содержание

Введение	3
Диагностическая работа	5
Решения задач 1.1—1.3 диагностической работы	11
Тренировочная работа 1. Угол между прямыми	14
Решения задач 2.1—2.3 диагностической работы	17
Тренировочная работа 2. Угол между прямой и плоскостью	18
Решения задач 3.1—3.3 диагностической работы	21
Тренировочная работа 3. Угол между двумя плоскостями	23
Решения задач 4.1—4.3 диагностической работы	26
Тренировочная работа 4. Расстояние от точки до прямой	28
Решения задач 5.1—5.3 диагностической работы	31
Тренировочная работа 5. Расстояние от точки до плоскости	34
Решения задач 6.1—6.3 диагностической работы	37
Тренировочная работа 6. Расстояние между двумя прямыми	39
Диагностическая работа 1	42
Диагностическая работа 2	48
Диагностическая работа 3	54
Ответы	60
Приложение 1. Сечения многогранников	61
Диагностическая работа 1	63
Диагностическая работа 2	66
Тренировочная работа 1	69
Тренировочная работа 2	72
Диагностическая работа 3	75
Диагностическая работа 4	78
Ответы и решения	81
Приложение 2. Тела и поверхности вращения	95
Диагностическая работа 1	97
Решения задач диагностической работы	100
Тренировочная работа 1	103
Решения задач тренировочной работы 1	106
Тренировочная работа 2	109
Решения задач тренировочной работы 2	112
Диагностическая работа 2	115
Решения задач диагностической работы 2	118
Диагностическая работа 3	121
Решение задач диагностической работы 3	124